# Capstone Project (Fall 2025) Oral Report:

Process Safety & Reliability Group



Designing a Scalable Process Safety Performance Measurement System for Companies at Different Stages of Process Safety Maturity

Student Team Members: Abdul Hai Mohammed & Aum Samir Patel

Industry Mentors: Mr. Robert Weber, Dr. Tekin Kunt, Mr. Karan Nair

Academic Mentors: Dr. Ray A Mentzer, Dr. William Clark, Prof. Michelle N. Chutka



# Agenda

| <ul> <li>Background and Challenges</li> </ul> |
|-----------------------------------------------|
|                                               |

- Project Aim and Scope
- Framework Development
- KPIs & Maturity Model
- Pilot Study- Framework Implementation & Validation
- Results
- Future Work



# **Background and Challenges**

- Small to mid-sized companies lack structured systems for consistent performance measurement.
- ➤ Even large companies show non-standardized metrics across sites.
- ➤ Process safety performance often measured through lagging indicators.
- >No structured, measurable way to track improvement.
- Scattered data, No performance visibility, Repeated incidents.



## **Project Aim and Scope**

- ➤ Develop a practical Process Safety Performance Measurement System (PSPMS).
- ➤ Create KPIs, review questions, and a maturity model for 10 key process safety element.
- Ensure usability for companies with limited data and varying process safety maturity.
- ➤ Providing a way to evaluate performance without depending solely on audits.



# Why OSHA Highlights 5 Elements for Small Companies

OSHA 3908-03 2017 Process Safety Management for Small Businesses

| Element                          | Why It's More Relevant                                                                                                                                     |
|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Process Safety Information (PSI) | Clear chemical and equipment info helps limited staff quickly understand hazards.                                                                          |
| Process Hazard Analysis (PHA)    | Simple methods (What-if/Checklist) make hazard reviews easier and cost-effective for smaller processes.                                                    |
| Training                         | Ensures all employees understand hazards and safe practices, critical when staff have multiple roles.                                                      |
| Mechanical Integrity (MI)        | Equipment failures can be catastrophic; maintaining fewer but critical assets properly helps small companies avoid major incidents with minimal resources. |
| Compliance Audits                | Regular audits catch gaps early and maintain compliance despite limited expertise.                                                                         |



## **Incident Investigation**

**CSB** incident reports

- ➤ 30 incidents from the past 3 years analyzed.
- ➤ Mechanical Integrity is the leading issue overall, followed by operating procedure (OP), PHA, and PSI.
- ➤ Additional elements identified as critical:
  - **□**Operating Procedures
  - ■Management of Change
  - ☐ Hot work permit

#### Incident Analysis - PSM Deficient Elements



The spider chart depicts the no. of companies that experienced incidents associated with failures in the respective PSM element.



# **Adding 5 More Elements**

Adopted from OSHA PSM & RBPS Elements

| Element                                | Justification                                                                                                    |
|----------------------------------------|------------------------------------------------------------------------------------------------------------------|
| Management of Change (MOC)             | Ensures disciplined review of modifications to avoid introducing new risks.                                      |
| Operating Procedures                   | Regularly reviewed and simplified SOPs improve safety and operator consistency.                                  |
| Permit System & Safe Work<br>Practices | Standardized permits for hot work, confined space, and maintenance ensure consistent control of high-risk tasks. |
| Contractor Management                  | Helps small firms oversee contractors through qualification, training, and supervision.                          |
| Incident Investigation & Learning      | Promotes quick learning and sharing of lessons to prevent repeat incidents.                                      |



# Introducing the Process Safety Performance Measurement System (PSPMS) Framework

Leading vs. Lagging KPI Logic

# Leading Indicators

System health

#### Lagging

 System outcomes

# Review Questions

Self assessment

# Maturity Level (1-4)

Capability

#### **Dashboard**

 Decision support

| Leading                                                                                                                                                            | Lagging                                                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Early warning signals.</li> <li>Proactive corrective actions.</li> <li>Provides basis for early intervention, preventing Tier 1/Tier 2 events.</li> </ul> | <ul> <li>Measures actual outcomes<br/>and consequences.</li> <li>Helps identify recurring failure<br/>pattern.</li> </ul> |



# **Maturity Levels (PSRG Maturity Model)**

#### Level 1 (Reactive/Initial)

Immature safety system. No formal PSM. Risks managed on ad hoc basis.

#### Level 2 (Dependent/Defined)

Policies exist but are inconsistently applied. Basic PSM structure only.

#### Level 3 (Independent/Managed)

Well-defined PSM consistently applied. Individuals actively use tools.

#### Level 4 (Optimized/Interdependent)

Proactive, peer-to-peer culture. Continuous improvement and data-driven performance.



### **Maturity Model Levels**

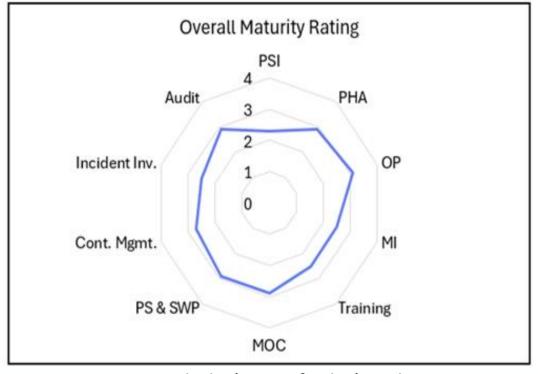
| Maturity Model Levels- Leading Indicators |                      |  |  |
|-------------------------------------------|----------------------|--|--|
| Level Range                               | Criteria             |  |  |
| Level 1                                   | 0 - 30%              |  |  |
| Level 2                                   | 31 - 60%             |  |  |
| Level 3                                   | 61 - 85%             |  |  |
| Level 4                                   | 86% - 100%           |  |  |
|                                           |                      |  |  |
| Maturity Model Levels                     | - Lagging Indicators |  |  |
| Level Range                               | Criteria             |  |  |
| Level 1                                   | > 60%                |  |  |
| Level 2                                   | 31 - 60%             |  |  |
| Level 3                                   | 16 - 30%             |  |  |
| Level 4                                   | 0 - 15%              |  |  |
| LOVOI T                                   | <u> </u>             |  |  |

- ➤ Based on PSRG Maturity Model, the Level 1- Level 4 scale was selected.
- >% metrics offer a simple and objective way to measure progress.
- ➤ More reliable than qualitative scoring by reducing subjectivity and bias.
- ➤ Uneven thresholds (30–60–85–100%) reflect increasing difficulty as maturity improves.
- ➤ Higher leading indicator performance and lower lagging event rates signify progression from reactive to predictive safety maturity.



# **Dashboard Example: Mechanical Integrity**

Track what's strong. Fix what's weak. Transform compliance into measurable performance.


|    | Element: Mechanical Integrity                                                                                   |                  |                |       |
|----|-----------------------------------------------------------------------------------------------------------------|------------------|----------------|-------|
|    | Key Performance Indicators                                                                                      | Company Data (%) | Level Assigned | Score |
|    | Leading Indicators                                                                                              |                  |                |       |
| 1  | % of pressure vessels/piping inspected on schedule                                                              | 90               | Level 4        | 4     |
| 2  | % critical safety interlocks tested as per schedule                                                             | 80               | Level 3        | 3     |
| 3  | % of pressure relief devices tested and recalibrated within prescribed intervals.                               | 70               | Level 3        | 3     |
| 4  | % of corrosion monitoring points inspected or sampled as per defined frequency.                                 | 50               | Level 2        | 2     |
| 5  | % of maintenance procedures reviewed & updated annually                                                         | 40               | Level 2        | 2     |
| 6  | % of protective relays, MCCs, and UPS units tested                                                              | 20               | Level 1        | 1     |
| 7  | % of pumps inspected/tested                                                                                     | 10               | Level 1        | 1     |
|    | Lagging Indicators                                                                                              |                  |                |       |
| 8  | % of failures occurring on equipment with prior maintenance or inspection within the last 12 months.            | 10               | Level 4        | 4     |
| 9  | % of leaks, ruptures, or LOPC due to MI program failure (corrosion, thickness, overpressure, wrong MOC)         | 30               | Level 3        | 3     |
| 10 | % of incidents caused by improper maintenance procedures or technician error                                    | 50               | Level 2        | 2     |
|    | Review Questions                                                                                                |                  |                |       |
| 1  | Does the MI program clearly identify and include all safety-critical equipment, instrumentation, and utilities? |                  |                |       |
| 2  | How do you schedule, document, and verify on-time preventive maintainence for all plant equipment?              |                  |                |       |
|    | Are equipment failures or near misses systematically analyzed for root causes and used to strengthen the MI     |                  |                |       |
| 3  | program?                                                                                                        |                  |                |       |
| 4  | Is there a structured process to identify, track, and replenish safety-critical spare parts inventory?          |                  |                |       |
| 5  | Does management review MI performance metrics regularly and act on trends or recurring deficiencies?            |                  |                |       |
|    | Overall Score                                                                                                   |                  | Level 2        | 2.5   |



# Matrix Level Example

| No.     | Element        | Level   | Score |
|---------|----------------|---------|-------|
| 1       | PSI            | Level 2 | 2.3   |
| 2       | PHA            | Level 3 | 2.9   |
| 3       | OP             | Level 3 | 3.1   |
| 4       | MI             | Level 2 | 2.5   |
| 5       | Training       | Level 2 | 2.5   |
| 6       | MOC            | Level 3 | 2.9   |
| 7       | PS & SWP       | Level 3 | 2.9   |
| 8       | Cont. Mgmt.    | Level 2 | 2.7   |
| 9       | Incident Inv.  | Level 2 | 2.5   |
| 10      | Audit          | Level 3 | 2.9   |
| Overall | Maturity Level | Level 2 | 2.72  |

| Levels                        | Scoring | Description                             |
|-------------------------------|---------|-----------------------------------------|
| Level 1 (Reactive/Initial)    | <1.5    | Fragmented and non-systematic approach. |
| Level 2 (Dependent/Defined)   | 1.5-2.8 | Developing; partial formalization.      |
| Level 3 (Independent/Managed) | 2.8-3.4 | Structured and improving system.        |
| Level 4                       | ≥ 3.4   | Predictive, data-driven safety culture. |







# Pilot Case Study: Maturity Assessment of a Small Chemical Plant in North America



# **Methodology & KPI Selection**

- ➤ Collected **near-miss and incident data** shared by the site.
- ➤ Mapped each incident to 5 OSHA PSM elements.
- > Developed KPIs for each element directly from the site's near-miss trends.
- ➤ Applied the Level 1–4 maturity scoring model based solely on verified site evidence and documented practices.
- ➤ Where information was missing, assumptions were transparently made and treated as indicators of maturity gaps.



# Element-Wise Strengths and Gaps (Based on Actual Site Evidence) - Weak Elements

### Mechanical Integrity (MI)

- Strengths: Reactors, tanks, and major equipment had inspection records.
- Gaps: Pipelines, corrosion monitoring points, and instrumentation lacked inspection/testing documentation.

### Process Hazard Analysis (PHA)

- Strengths: 5-year re-PHA cycle was completed on time.
- Gaps: Some PHA recommendations were not closed and updated within the timeline.

### Process Safety Information (PSI)

- Strengths: P&IDs and SDSs were available and accessible.
- Gaps: Chemical compatibility data and PRD sizing/relief basis were missing.



# Element-Wise Strengths and Gaps (Based on Actual Site Evidence)- Elements that appear to be Strong

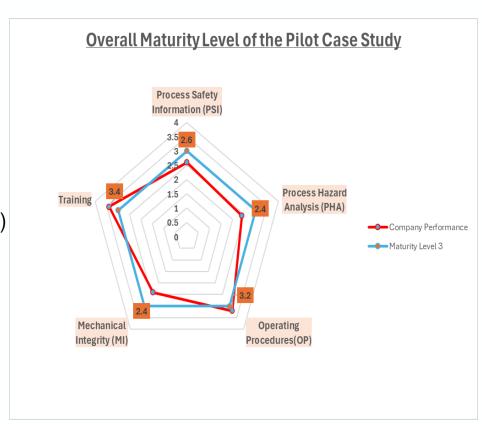
# Operating Procedures (OP)

- Strengths: SOPs and batch records were well documented with daily operating instructions.
- Gaps: No documented emergency response instructions for power failure at each reaction/processing step.

# Training

- Strengths: Operators received regular training and refresher programs.
- Gaps: No formal competency verification or documented assessment of operator capability.




# Element-wise KPI Maturity Level Scoring Matrix

| Element                             | Level 1                                                                                                                               | Level 2                                                           | Level 3                                                                             | Level 4                                                                                                                                                                                                              | Plant<br>Score |
|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| Process Safety<br>Information (PSI) | <ol> <li>% of safety-critical equipment with<br/>fully documented PSI</li> <li>% of chemical compatibility<br/>assessments</li> </ol> |                                                                   | 3. % of leaks/corrosion/failures linked to wrong material of construction selection | 4. % of P&IDs verified/validated<br>5. % of SDS updated and accessible                                                                                                                                               | 2.6            |
| Process Hazard<br>Analysis (PHA)    | <ol> <li>% of PHA recommendations<br/>tracked through MOC</li> <li>% of incidents involving missed<br/>hazards during PHA</li> </ol>  | 3. % of PHA recommendations closed within timeframe               |                                                                                     | 4. % of PHAs completed/revalidated in required 5-year cycle 5. % of PHAs updated following major changes                                                                                                             | 2.4            |
| Operating<br>Procedures (OP)        | % of procedures including corrective actions for emergency power failure                                                              |                                                                   | 2. % of incidents where deviation from procedure was root cause                     | <ul><li>3. % of procedures reviewed annually</li><li>4. % of shift-log checklists verified</li><li>5. % of operators trained on revised procedures</li></ul>                                                         | 3.2            |
| Mechanical<br>Integrity (MI)        | <ol> <li>% of pressure relief devices<br/>tested/recalibrated</li> <li>% of corrosion monitoring points<br/>inspected</li> </ol>      | 3. % of equipment<br>failures occurring<br>despite<br>maintenance |                                                                                     | 4. % of pressure vessels inspected on schedule 5. % of critical safety interlocks tested                                                                                                                             | 2.4            |
| Training                            | 1. % of training programs updated after MOC/incidents                                                                                 |                                                                   |                                                                                     | <ol> <li>% of employees completing mandatory training</li> <li>% of contractors completing safety induction</li> <li>% of emergency drills conducted</li> <li>% of emergency drill deficiencies corrected</li> </ol> | 3.4            |



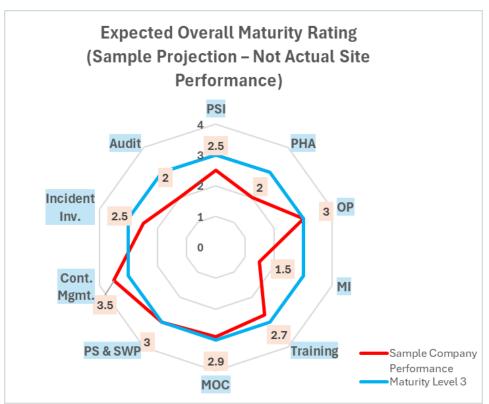
# **Key Takeaways & Maturity Scoring**

- ➤ The maturity scores accurately reflected the strengths and weaknesses observed in actual site data for the KPIs selected for the 5 elements.
- ➤ Elements with incomplete documentation & inspections (PSI, MI) naturally scored lower.
- ➤ Recurring themes in near-miss data aligned with lower maturity levels, confirming the framework's reliability.





# Training Score vs. Real Incident Patterns


- Training systems appear strong on paper.
- However, year-wise incident trends show handling errors, incorrect chemical additions and few LOPC incidents.
- These patterns indicate **operational discipline and task-specific competency gaps**, not captured by the leading indicators used for scoring.

#### **Key Limitations include:**

- The current KPI set measures *training completion*, not *training effectiveness*, procedural clarity, or operator competency during real work.
- ➤ But does **not fully represent on-the-floor human performance**, which the incident data highlights.



## **Next Steps Toward a Comprehensive Maturity Model**



- Expand the KPI set beyond the initial limited indicators to capture full process coverage.
- ➤ Include deeper evaluation of additional elements such as MOC, PTW, Contractor Management, and Incident Investigation.
- ➤ Replace assumption-based scoring with validated and complete site data.
- Strengthen the model using **fully** verified KPI inputs for accurate maturity determination.



### What this work demonstrates?

- ➤ Transforms complex PSM expectations into measurable performance.
- Provides clarity, visibility, and predictive insight.
- Introduces internal benchmarking, allowing companies to compare maturity across production units or sister sites.
- Enables monthly performance tracking through dashboards, so leadership can see what is improving, what is drifting, and where interventions are needed.



### **Future Scope & Enhancements**

Smarter KPIs. Deeper Insight. Stronger Systems.

- Expand KPIs to include qualitative KPIs and risk-based weightage.
- >Add guidance prompts so companies know exactly what a low score means
- Integrate framework into daily operations, not as an audit or checklist
- Automate dashboards for monthly tracking and internal benchmarking,
- **Extend assessment** to cover all OSHA elements.
- ➤ Validate across multiple sites to strengthen industry applicability.



## Acknowledgements

- ➤ Purdue ChE & P2SAC Program
  - o For enabling this project and supporting the collaboration.
- ➤ Process Safety & Reliability Group (PSRG), Houston
  - Industry Mentors: Mr. Robert Weber, Dr. Tekin Kunt, Mr. Karan Nair
    - For their guidance, mentorship, and industry support.
- Academic Mentor: Prof. Ray Mentzer, Dr. William Clark, Prof. Michelle N. Chutka
  - For academic direction and process safety insight.
- Small Chemical Plant in North America (Case Study Pilot Plant)
  - o For providing site data, operational context, and hosting our visit.



### References

- Department of Labor, U. S., Herman, A. M., & Jeffress, C. N. (2000). Process Safety management. In OSHA 3132. <a href="https://www.osha.gov/sites/default/files/publications/osha3132.pdf">https://www.osha.gov/sites/default/files/publications/osha3132.pdf</a>
- Center for Chemical Process Safety. (2014). Risked based Process Safety Overview.
   American Institute of Chemical Engineers.
   <a href="https://www.icheme.org/media/17250/risk\_based\_process\_safety\_overview.pdf">https://www.icheme.org/media/17250/risk\_based\_process\_safety\_overview.pdf</a>
- API Recommended Practice 754, 3rd Edition. (n.d.). https://www.api.org/products-and services/standards/important-standards-announcements/754.
- U.S. Department of Labor. (2017). Process safety management for small businesses. In U.S. Department of Labor. Process Safety Management for Small Businesses.
- Incident Reporting Rule Submission Information and data Volume III of CSB Incident Reports. https://www.csb.gov/news/incident-report-rule-form-/.
- Kunt, T. et al. (2023) 'Maturity model approach for building effective process safety management systems,' Process Safety Progress, 43(2), pp. 233–238. https://doi.org/10.1002/prs.12543.
- Workplace Safety and Health Council (Chemical Industries) Committee (2018)
   Guidelines on Process Safety Performance Indicators, Workplace Safety and Health Council (Chemical Industries) Committee, p. 2.



# Questions?

